

Review Article

Sahel Journal of Life Sciences FUDMA (SAJOLS) June 2025 Vol. 3(2): 133-138 ISSN: 3027-0456 (Print) ISSN: 1595-5915 (Online) DOI: <u>https://doi.org/10.33003/sajols-2025-0302-16</u>

An Empirical Review on the Impact of Heavy Metal-Polluted Soil on Soil Enzyme Activities

*Ogbe Kingsley Unekwu¹, Simon Sani Ocholi², Somdare peace Onas³, Audu Aminu⁴, Shaibu Enyojo Lawrence¹, Hafsat Bashir⁵, Alabi Efemena Bridget⁵ and Sikirat Abdulhakeem Enebere⁵

¹Department of Animal and Environmental Biology, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria

²Department of Chemistry/Biochemistry, Federal Polytechnic Nasarawa, Nasarawa State, Nigeria ³Department of Zoology, Federal University Lokoja, Kogi State, Nigeria

⁴Department of Soil and Environmental Management, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria

> ⁵Department of Biology, Federal University Lokoja, Kogi State, Nigeria *Corresponding Author's email: <u>ogbekingsley90@gmail.com</u>

ABSTRACT

Environmental contamination by heavy metals is an issue of global concern. Human activities, the release of various organic and inorganic contaminants have continued to rise. Some of these activities include industrialization, faming activities, and vehicular emissions amongst others. Heavy metals have been identified as one of the major groups of pollution because they pose deleterious effects on plants, animals and the environment. Heavy metals are not biodegraded by microbial activities; rather they persist and are transmitted along the food chain with a high degree of bioaccumulation. Heavy metals in soil have continued to increase, since the soil acts as a natural reservoir of these metals in the environment. Hence metals from other parts of the environment usually are found within the soil. This review provides details information on effects of heavy metals on soil enzyme activities. The review indicates that the heavy metals in such high concentrations inhibit the activity of enzyme secreting flora and fauna in soil, as excessive amounts of heavy metals disrupt the homeostasis of soil by interfering with the control mechanisms at genetic level. Thus, the decline in soil enzyme activity reflects the soil degradation potential of the heavy metals released into the soil. Therefore, it is crucial to take adequate remediation measure in order to protect the health of soil flora and fauna in these areas.

Keywords: Effects; Enzymes; Heavy metals; Pollutions; Soil

Citation: Ogbe, K.U., Ocholi, S.S., Somdare, P.O., Aminu, A., Lawrence, S.E., Hafsat, B., Alabi, E.B. & Enebere, S.A. (2025). An Empirical Review on the Impact of Heavy Metal-Polluted Soil on Soil Enzyme Activities. *Sahel Journal of Life Sciences FUDMA*, 3(2): 133-138. DOI: <u>https://doi.org/10.33003/sajols-2025-0302-16</u>

INTRODUCTION

Heavy metals are a group of elements with metallic properties that include transition metals, metalloids, lanthanides, and actinides (Li *et al.*, 2019).Heavy metals are unbreakable, and most of them are poisonous to animals and people. Metals are particularly concerning among environmental contaminants since they are less apparent, have extensive effects on ecosystems, are poisonous, and bioaccumulate in ecosystems, biological tissues, and organs (Nontobeko*et al.*, 2022).Heavy metals are chemical element materials with relatively high densities that exist naturally in numerous amounts in the environment. Most heavy metals are poisonous even in low quantities, and their accumulation in bodily tissues over time may be harmful to human health (Titilawo*et al.,* 2020). Some metals are carcinogenic, genotoxic, or cause genetic mutations in humans and animals depending on the amount and duration of exposure; these include As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn (Agoro*et al.,* 2020).Soil health refers to the healthy balance of organisms and their surrounding environment inside the soil ecosystem. Every disruption to the soil caused by the negative impacts of pollutants on soil biochemical activity affects soil health and functions (Nyikaet al., 2019). Soil enzymes are derived mainly from microbes, with some originating from plant or animal wastes. Enzymes accumulate in the soil as free enzymes or enzymes stabilized on clay surfaces and soil organic materials. Most enzymes are often employed to assess the impact of pollutants, such as dehydrogenase (DH), phosphatase (PHO), and urease (UR) (Lee et al., 2020).

Soil enzymes are well-known for accurately reflecting the degree of deterioration of soil quality caused by soil pollution and diagnosing the

a /a .

functional recovery process of polluted soil (Nontobeko et al., 2022). So far, contaminated site rehabilitation has mainly focused on pollutant removal, which presents expenses and secondary ecological disturbance in the repair process. Sustainable soil remediation aims to save costs, restore soil health, minimize environmental disruption, and maintain its effects. Insufficient enzyme activity can result in an accumulation of chemicals that are harmful to the environment; some of these chemicals may further inhibit soil enzyme activity. Pollutant concentrations and soil enzyme activity have a negative connection in general (Nontobeko et al., 2022).

-- --

S/N	References	Title of the paper	Findings
1	Adam, 2025	Impact of manganese, iron,	Metal fraction associated with organic matter had
		and cobalt fraction on soil enzymes activities	the greatest impact on the activities of the studied enzymes.
2	Aporite et	Mata –analysis of heavy	Heavy metal contamination inhibits arylsulfatsase
	al., 2020	metal on soil enzyme	activities and dehydrogenase acticities by 72% and
		activities	64% respectively. The mata analysis showed a clear
			decrease in the activities of all enzymes in response
			to heavy metal contamination
3	Botang <i>et</i>	Effect of heavy metals on	The potential ecological risk index of six heavy metl
	al., 2022	microorganism and	was ranked as C> Cu >Pb >Ni > Zn. <i>V. catalase,</i>
		emzymes in soils of lead-zinc	cellulose, sucrose and neutral phosphatase activity
		tailing pond	had negative correlation with the content of six
			heavy metal. Higher heavy metal level lead to the
			decrease of enzyme activities
4	Xiany <i>et al</i>	Quantitative assessment on	Arylsulfatase was the most sensitive soil enzyme and
	2015	soil enzyme activities of	could be used as an indicator to study the enzymatic
		heavy metal contaminated	toxicity of heavy metal under various soil properties.
		soils with various soil	Soil properties had significant effects on the activities
		properties	of soil born enzymes in heavy metal polluted soil.

Table 1a: Effects of heavy metal pollution on soil enzyme activities -----**6** . .

Sahel Journal of Life Sciences FUDMA 3(2): 133-138, 2025

S/N	Authors	Research topic	Findings
6	Sakn et al,	Enzyme activities and heavy	Dehydrogenase, catalase, and urease activity
	2023	metal interaction in calcareous	decrease rapidly with heavy metal concentration.
		soil under different land uses.	High level of heavy metals can decrease some enzyme activity in the soil
7	Mohammed-	Influence of biofertilizers on	Soil enzyme activity was negatively correlated to
	Haroon <i>et al.,</i>	heavy metal bioremediation	heavy metals at significant level. Biofertilize
	2023	and enzyme activities in the	application reduces heavy metal level and
		soil to revealing the potential for sustainable soil restoration	increased soil enzyme.
8	Justice and	Effect of heavy metal	The activities of catalase, urease and
	Guangyu,	contamination on soil enzyme	dhydrogenase were all affected by Cd
	2021	activity	contamination. The order sensitivity. Soil enzyme
			activity might be used as a metrics to measure
			the impact of heavy metals on biological activity in the soil
9	Naoval <i>et al.,</i>	Heavy metal effect on	Pearson correlation showed significant positive
	2023	agricultural viral soil enzymes	correlation between studied soil enzyme and
		activity to fez, Morocco	between these enzyme activity and heavy metal
			(Cu, Pb and Zinc). And significant negative
			correlation between enzyme activity and heavy
			metal (Cr and Ni).
10	Masoumeh <i>et</i>	Effect of heavy metals on	The correlations between total concentration of
	al, 2014	enzyme activity and microbial	metals and bioavailable fractions with microbial
		biomass of the soil around the	quotient, urease, and alkaline phosphatase
		waste disposal site (case study,	activity were moderate.
		of Savana-Iran	

Table 1b: Effects of heavy metal pollution on soil enzyme activities

Table 1c: Effects of heavy metal pollution on soil enzyme activities

S/N	Authors	Research topic	Findings
11	Ofuegbu <i>et</i>	Effect of heavy metal on soil	The activities of dehydrogenase, polyphenol
	<i>al.,</i> 2013	enzymatic activities in Ishiagu	oxidase, hydrogen peroxidase,alkaline and acid
		mining area of Ebonyl State,	phosphatases and urease showed significant
		Nigeria.	negative correlation at p<0.05 with heavy metal
			contents except for Zn against dehydrogenase
			activity and Cd against hydrogen peroxidae and
			urase activities that were though negative
12	Sahoo <i>et</i>	Effect of heavy metals on enzyme	Amylase, invertase, cellulose, dehydrogenase and
	al., 2014	activities in sponge iron industry	urease activity in the experimental site were
		polluted soil	significantly low when compared to the
			controlled site in both season. With the increase
			in distance from the stack of the industry, the
			heavy metal contents decreased and the enzyme
			activities increase
13	Marta <i>et</i>	Assessment of heavy metals	The lowest activity or soil enzymes (acid
	al., 2016	contamination and enzymatic	phosphatase, and in particular B-glucosidase was
		activity in pine forest soils under	found in the site with the highest levels of heavy
		different levels of anthropogenic	metal.
		stress	
14	Radina <i>et</i>	Enzyme activities in soils under	The result showed that there was enzyme
	al., 2023	heavy metal pollution: a case	functional redundancy between soils. Soil

Sahel Journal of Life Sciences FUDMA 3(2): 133-138, 2025

study from the surroundings of a non- ferrous metal plant in Bulgaria enzyme showed a relatively high capacity to tolerate long term heavy metal pollution.

S/N	Authors	Research topic	Findings
		•	
15	Marta <i>et</i>	The influence of heavy metals on	The B-glucosidase and ureaseactivity in the soil
	al., 2021	biological soil quality assessments	correlated most negatively with the examined
		in the Vaccinium myrtillus L.	metals. The study showed that rhizophere soil is
		rhizosphere under different field	more sensitive and could be used in the
		conditions.	monitoring and assessment of forest ecosystem
16	Liugen <i>et</i>	The inhibitory effect of cadmium	Heavy metal inhibit soil enzymes activities. Both
	al, 2019	and/ or mercury on soil enzyme	Cd and Hg decreased 25.52-34.89% of the soil
		activity, basal repiration , and	catalase activity and the highest level of Hg (30
		microbial community structure in	mg kg-1) decreased 76.50-89.88% of the soil
		coal mine – affected agricultural	urease activity and 85.60-92.92% of the soil
		soil	dehydrogenase activity and the soil acid
			phosphatase activity significantly decreased.
			Soils containing the highest level of Cd and Hg
			exhibited the lowest soil enzyme activities
17	Gang <i>et al.,</i>	Interactive effect of radioactive	The invertase and –glucosidase activities were
	2017	and heavy- metal contamination on	significantly lower in the core mining areas than
		soil enzyme activity in a former	the control areas (p<0.05). Activities of the two
		Uranim mine	enzymes decreased with increasing metal
			concentrations and radioactivity.

Table 1d: Effects of heavy metal pollution on soil enzyme activities

Table 1e: Effects of heavy metal pollution on soil enzyme activities

S/N	Authors	Research topic	Findings
18	Adam and	Influence of Zn, Cd and Cu fractions	Activity of micro organism. Protease activity
	Dorota,	on enzymatic activity of arable soils.	was influenced by f2 fraction. Protease and
	2018		dehydrogenase activities were significantly
			differenciated between sampling dates.
19	Agata et	Assessment of selected heavy metal	Correlation analysis showed a significant
	al.,2020	and enzyme activity in soils within	relationship between total Pb content and
		the zone of influence of various tree	nitrate reductase. Nitrate reductase activity
		species	also correlated positively with bioavailable C
			content. The study found no heavy metals
			content to be in excess of permissible levels.
			This indicates their natural accumulation in
			the soil, which did not inhibit the tested
			enzymes.
20	Sonia and	Response of soil enzymes to	The study showed that addition of Cd and Zn
	Saksham,	different heavy metals	negatively inhibited soil enzymes activities.
	2015		with regards to the four enzyme, urease is th
			most sensitive to combined poluution of Cd
			and Zn with a significant negative correlation
			between urease activity. It is considered that
			heavy metals mainly inhibit enhibit enztmati
			reactions either their complexing with
			substrate or blocking the functional groups o
			enzymes or reacting with complex enzyme-
			substrate.

21 Linchuan *et* Proper land use for heavy metal*al.*,2017 polluted based on enzyme activity analysis around a Pb-Zn mine in Feng County, China urease was the most sensitive enzymes to Pd and Cd in the farm land, and catalaseand phoshatase were the most sensitive enzymes to Pb, Zn, and Cd. Wood land might be optimum land use choice in relieving heavy metal pollution..

CONCLUSION

Heavy metal toxicity in the soil is one of the problems of remarkable priority in the world. Heavy metals are toxic to plants, the soil, as well as human health at high concentrations. It is therefore paramount to continually monitor the contents of heavy metals in various environmental matrices, most especially the soil since the soil is the natural storeroom for various environmental contaminants.

RECOMMENDATIONS

The decline in soil enzyme activity reflects the soil degradation potential of the heavy metals released into the soil. Therefore, it is highly essential to take immediate remediation measure in order to protect the health of soil flora and fauna in these areas.

REFERENCES

Agoro M.A., Adeniji A.O., Adefisoye M.A., Okoh O.O. Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape province, South Africa. Water. 2020;12:2746. doi: 10.3390/w12102746.

Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., Merino, C., Cornejo, P., &Kuzyakov, Y. (2020). Metaanalysis of heavy metal effects on soil enzyme activities. *The Science of the total environment*, *737*, 139744.

https://doi.org/10.1016/j.scitotenv.2020.139744

Bartkowiak, A., Lemanowicz, J., & Lamparski, R. (2020). Assessment of selected heavy metals and enzyme activity in soils within the zone of influence of various tree species. *Scientific reports*, *10*(1), 14077. <u>https://doi.org/10.1038/s41598-020-69545-3</u>

Fang, L., Liu, Y., Tian, H., Chen, H., Wang, Y., & Huang, M. (2017). Proper land use for heavy metalpolluted soil based on enzyme activity analysis around a Pb-Zn mine in Feng County, China. Environmental science and pollution research international, 24(36), 28152-28164. https://doi.org/10.1007/s11356-017-0308-4

Haroun, M., Xie, S., Awadelkareem, W. *et al.* Influence of biofertilizer on heavy metal bioremediation and enzyme activities in the soil to revealing the potential for sustainable soil restoration. *Sci Rep* 13, 20684 (2023). https://doi.org/10.1038/s41598-023-44986-8

Kandziora-Ciupa, M., Ciepał, R., Nadgórska-Socha, Assessment of Heavy Α. (2016). Metals Contamination and Enzymatic Activity in Pine under Different Levels Forest Soils of Stress. Polish Journal Anthropogenic of Environmental Studies, 25(3), 1045-1051. https://doi.org/10.15244/pjoes/61813

Kandziora-Ciupa, M., Nadgórska-Socha, A., & Barczyk, G. (2021). The influence of heavy metals on biological soil quality assessments in the Vaccinium myrtillus L. rhizosphere under different field conditions. *Ecotoxicology (London, England), 30*(2), 292–310. <u>https://doi.org/10.1007/s10646-021-02345-1</u>

Karaca, A., Cetin, S.C., Turgay, O.C., Kizilkaya, R. (2010). Effects of Heavy Metals on Soil Enzyme Activities. In: Soil Heavy Metals. Soil Biology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02436-8 11

Lee S.H., Kim M.S., Kim J.G., Kim S.O. Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability. 2020;12:8209. doi: 10.3390/su12198209.

Lei, S., Shi, Y.,Qiu, Y., Che L., Xue, C. Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. *Science Total Environment*.646: 2019. 1281– 1289.Doi: 10.1016/j.scitotenv.2019.07.374.

Łukowski, A. (2025). Impact of manganese, iron, and cobalt fractions on soil enzyme activities. Journal of Ecological Engineering, 26(3), 8-19. <u>https://doi.org/10.12911/22998993/196566</u>

Nikolova, R., Boteva, S., Kenarova, A., Dinev, N., &Radeva, G. (2023). Enzyme activities in soils under heavy metal pollution: a case study from the surroundings of a non-ferrous metal plant in Bulgaria. *Biotechnology & Biotechnological* *Equipment*, *37*(1), 49–57. https://doi.org/10.1080/13102818.2022.2149348

Nontobeko, G. M., Francis, B. L., Opeoluwa, O. O. Enzyme Activities In Reduction Of Heavy Metal Pollution From Alice Landfill Site In Eastern Cape, South Africa.*International Journal of Environmental Research and Public Health*. 2022:19(19):12054. doi: 10.3390/ijerph191912054

Nwite, A. T., Obasi, N. A., Okorie, A. N., & Okoro, C. N. (2021). Effect of Heavy Metal Contamination on Soil Enzymes Activities. *Journal of Environmental Protection*, 12(5), 415-424.https://doi.org/10.4236/gep.2021.96008

Nyika J.M., Onyari E.K., Dinka M.O., Mishra S.B. Heavy metal pollution and mobility in soils within a landfill vicinity: A south African case study. *Orient.*

J. Chem. 2019;35:1286. doi: 10.13005/ojc/350406.

Ofoegbu, C., Akubugwo, E.I., Dike, C.C., Maduka, H.C., Ugwu, C.E., & Obasi, N.A. (2013). Effects of Heavy Metals on Soil Enzymatic Activities in the Ishiagu Mining Area of Ebonyi State-Nigeria. *IOSR Journal of Environmental Science, Toxicology and Food Technology*, *5*, 66-

71.https://doi.org/10.9790/2402-0566671

Sadeghi Poor Sheijany, M., Shariati, F., &Yaghmaeian Mahabadi, N. (2024). The Effects of Heavy Metals on Enzyme Activity and Microbial Biomass of the Soil Around the Waste Disposal Site (Case Study of Saravan - Iran). *Soil and Sediment Contamination: An International Journal*, 1–23. https://doi.org/10.1080/15320383.2024.2431110

Sahoo, S., Pattanayak, S. K., & Chand, S. (2014). The effect of heavy metals on enzyme activities in sponge iron industry polluted soil. ResearchGate. Retrieved from

https://www.researchgate.net/publication/36846 4347 The effect of heavy metals on enzyme a ctivities in sponge iron industry polluted soil

Sakin, E., Yanardağ, İ. H., Ramazanoğlu, E., & Yalçın, H. (2024). Enzyme activities and heavy metal interactions in calcareous soils under different land uses. *International journal of phytoremediation*, *26*(2), 273–286. <u>https://doi.org/10.1080/15226514.2023.2238818</u> Sethi, S., & Gupta, S. (2015). Responses of soil enzymes to different heavy metals. *Biolife*, *3*(1), 147-153. Tang, B., Xu, H., Song, F., Ge, H., & Yue, S. (2022). Effects of heavy metals on microorganisms and enzymes in soils of lead-zinc tailing ponds. *Environmental research*, 207, 112174. https://doi.org/10.1016/j.envres.2021.112174

Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., Luo, L., Yang, Y., Huang, H., & Chen, A. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. *The Science of the total environment*, *701*, 134751. https://doi.org/10.1016/j.scitotenv.2019.134751

Titilawo Y., Adeniji A., Adeniyi M., Okoh A.(2018) Determination of levels of some metal contaminants in the freshwater environments of Osun State, Southwest Nigeria: A risk assessment approach to predict health threat. Chemosphere,211:834–843. doi: 10.1016/j.chemosphere.2018.07.203.

Xian, Y., Wang, M., & Chen, W. (2015). Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. *Chemosphere*, *139*, 604–608. <u>https://doi.org/10.1016/j.chemosphere.2014.12.0</u> 60

Yang, G., Dong, F., Liu, M., Nie, X., Zong, M., Peng, C. ... Zhang, W. (2018). Interactive Effect of Radioactive and Heavy-Metal Contamination on Soil Enzyme Activity in a Former Uranium Mine. Polish Journal of Environmental Studies, 27(3), 1343-1351.

https://doi.org/10.15244/pjoes/76182

Zerrari, N., Rais, N., El Ghachtouli, N., Kouchou, A., Ijjaali, M. (2023). Heavy Metals Effects on Agricultural Soil Enzyme Activities of Fez, Morocco. Journal of Ecological Engineering, 24(5), 144-154.

https://doi.org/10.12911/22998993/161672

Zheng, L., Li, Y., Shang, W (2019)The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil. *Ann Microbiol* 69, 849–859. https://doi.org/10.1007/s13213-019-01478-3