Sahel Journal of Life Sciences FUDMA 3(3): 320-323, 2025

Sahel Journal of Life Sciences FUDMA (SAJOLS)

September 2025 Vol. 3(3): 320-323

ISSN: 3027-0456 (Print) ISSN: 1595-5915 (Online)

DOI: https://doi.org/10.33003/sajols-2025-0303-41

Research Article

Concurrent Hepatic and Pulmonary Fasciolosis in a White Fulani Cow: A Case Report Highlighting Food Safety and Economic Implications

*Chukwu, V. Elochukwu^{1,2}, Yunusa, H. Garba^{3,4}, Onyekanihu, A. Chisom¹, Saadudeen, A. Muhideen², Oraka, O. Ann⁵, Kawe, M. Simon¹, and Mohammed, Balarabe R.¹

¹Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja, Nigeria

²Agriculture and Rural Development Secretariat, Federal Capital Territory Administration, Nigeria
³Veterinary Parasitology, Faculty of Pathology, Postgraduate College of Veterinary Surgeons, Nigeria
⁴Depot, Nigeria Army Veterinary Clinic, Zaria, Nigeria

⁵Public Health Officer, Judiciary Medical Center, FCT, Abuja, Nigeria *Corresponding Author's email: victoriaelo33@gmail.com

ABSTRACT

Fasciolosis, caused by liver flukes of the genus *Fasciola*, remains a globally significant parasitic disease of ruminants, with annual economic losses exceeding US\$3.2 billion due to decreased productivity and organ condemnation. We report a rare case of concurrent hepatic and pulmonary fasciolosis in a 400 kg White Fulani cow that resulted in condemnation of both the liver and lungs at postmortem inspection. Clinically, the animal presented with respiratory distress, jaundice, dehydration, weight loss, and emaciation. Fecal examination revealed operculated *Fasciola* eggs, while necropsy demonstrated severe hepatic fibrosis, necrotic tracts, pipe-stem lesions, and adult flukes, alongside pulmonary congestion, necrotic foci, and adhesions consistent with ectopic migration. This case emphasizes the parasitological and pathological significance of fasciolosis, its contribution to economic losses in the cattle industry, and the zoonotic risk to humans. The report highlights the necessity of integrated control strategies, including regular anthelmintic treatment, improved animal husbandry, snail control, and strengthened abattoir surveillance to safeguard both livestock health and food safety.

Keywords: Cattle; Ectopic migration; Fasciolosis; Food safety; Organ condemnation

Citation: Yunusa, H.G., Onyekanihu, A.C., Saadudeen, A.M., Oraka, O.A., Kawe, M.S., & Mohammed, B.R. (2025). Concurrent Hepatic and Pulmonary Fasciolosis in a White Fulani Cow: A Case Report Highlighting Food Safety and Economic Implications. *Sahel Journal of Life Sciences FUDMA*, 3(3): 320-323. DOI: https://doi.org/10.33003/sajols-2025-0303-41

INTRODUCTION

Fasciolosis is a neglected foodborne parasitic disease caused by trematodes of the genus *Fasciola*, notably *F. gigantica* and *F. hepatica* (Hayward *et al.*, 2021; Saijuntha *et al.*, 2021). Globally, fasciolosis is responsible for economic losses exceeding US\$3.2 billion annually due to reduced meat and milk yield, impaired fertility, and organ condemnation (Flores-Velázquez *et al.*, 2023). The World Health Organization (WHO) has classified fasciolosis as a neglected tropical disease, with over 2.4 million people infected worldwide and nearly 180 million at risk. Human fasciolosis is

increasingly reported, reinforcing it's One Health significance (Opio et al., 2021; Abaya et al., 2023). Fasciola have a complex life cycle involving freshwater snails (Radix natalensis, Galba truncatula) as intermediate hosts. Their distribution and transmission are strongly influenced by rainfall, flooding, and ecological conditions (Nyagura et al., 2022; Modabbernia et al., 2024). Following ingestion of metacercariae, immature flukes migrate from the intestine to the liver, establishing in the bile ducts and causing chronic hepatopathy (Lalor et al., 2021). Beyond hepatic damage, the ectopic migration of immature

flukes to extrahepatic organs such as the lungs and brain has been reported but remains uncommon (Weinstock & Leung, 2022; Nukeri *et al.*, 2022).

In Nigeria and other African countries, fasciolosis remains endemic, exacerbated by poor animal husbandry, limited veterinary services, lack of routine deworming, and informal slaughter practices that bypass meat inspection (Ahmad *et al.*, 2020; Banwo *et al.*, 2023; Yuguda *et al.*, 2024). This case report documents concurrent hepatic and pulmonary fasciolosis in a White Fulani cow, highlighting the parasitological significance, economic losses, and public health risks.

CASE PRESENTATION

A 400 kg adult female White Fulani cow was presented for clinical evaluation with a history of progressive respiratory difficulty, coughing, anorexia, and inability to graze despite being offered hay and maize bran.

On physical examination, the animal showed dyspnoea, jaundiced mucous membranes, marked dehydration, severe weight loss, and poor body condition. Blood and faecal samples were collected. Haemoparasites were

not detected on blood smears, while faecal flotation revealed numerous operculated eggs (Plate 1) morphologically consistent with *Fasciola* spp.

Due to financial limitations, the owner opted for slaughter instead of prolonged treatment.

POSTMORTEM FINDINGS

Gross examination of the liver revealed extensive pathological changes, including migratory tracts filled with necrotic debris, fibrotic lesions, calcification, and adult *Fasciola* flukes embedded in the parenchyma (Plate 2). The bile ducts were markedly dilated, with characteristic "pipe-stem" fibrosis. On incision, the hepatic tissue appeared gritty and discoloured (Plate 3). The lungs showed significant lesions, including congestion, whitish necrotic foci, firm consolidated areas, and pleural adhesions (Plate 3). These findings were consistent with ectopic migration of *Fasciola* flukes and secondary bacterial infection. In accordance with standard meat inspection protocols (FAO, 2007), both the liver and lungs were condemned.

Plate 1. Oval eggs of *Fasciola* on fecal sedimentation as seen under the microscope x10, x40 magnification

Plate 2. Showing harvested *Fasciola* from the condemned organs

Sahel Journal of Life Sciences FUDMA 3(3): 320-323, 2025

Plate 3. Showing the condemned liver and lungs with lesions

DISCUSSION

Bovine fasciolosis is one of the most important parasitic diseases of livestock, with *F. gigantica* predominating in Africa (Nukeri *et al.*, 2022; Banwo *et al.*, 2023). This case highlights an unusual presentation where both hepatic and pulmonary tissues were simultaneously condemned due to the ectopic migration of immature flukes. Comparable cases have been reported in goats (Oljira *et al.*, 2022) and buffaloes (Seyedrasouli *et al.*, 2023; Mancera *et al.*, 2024), but reports in cattle are rare.

Economic losses from fasciolosis are substantial, arising from liver condemnation, reduced milk and meat yield, infertility, and increased treatment costs (Girma *et al.*, 2024; 2025). The concurrent condemnation of both liver and lungs represents an amplified economic burden. Moreover, ectopic lesions may mimic other conditions such as bacterial pneumonia (Corda *et al.*, 2022), complicating diagnosis.

The ectopic migration observed here illustrates the complexity of host–parasite interactions, possibly involving aberrant migration of juvenile flukes via the vasculature into systemic circulation (Flores-Velázquez et al., 2023). In addition, drug resistance is an emerging challenge: triclabendazole, the treatment of choice against Fasciola, is increasingly compromised by resistant strains (Kelley et al., 2016; Beesley et al., 2023).

From a zoonotic perspective, fasciolosis remains a neglected but significant public health concern. In endemic regions, humans acquire infection through the consumption of aquatic vegetation contaminated with metacercaria (Abaya *et al.*, 2023). With millions at risk, fasciolosis requires an integrated One Health approach. Control strategies must combine regular anthelmintic administration, snail intermediate host management, improved grazing practices, and enhanced abattoir surveillance. Adoption of molecular and serological diagnostics will improve early detection and facilitate targeted interventions (Yihunie *et al.*, 2024).

CONCLUSION

This case demonstrates the severe parasitological and pathological consequences of fasciolosis in cattle, with concurrent hepatic and pulmonary involvement leading to condemnation of vital organs. Such cases represent not only a direct economic burden to farmers but also a public health concern due to the zoonotic potential of *Fasciola* spp. Routine veterinary surveillance, integrated parasite control strategies, and stronger abattoir inspection frameworks are urgently needed to reduce the impact of fasciolosis in endemic regions. In addition, a One Health framework is essential to safeguard livestock productivity, food safety, and human health in the endemic areas.

REFERENCES

Abaya, S. W., Mereta, S. T., Tulu, F. D., Mekonnen, Z., Ayana, M., Girma, M., ... & Graham-Brown, J. (2023). Prevalence of human and animal fasciolosis in Butajira and Gilgel Gibe health demographic surveillance system sites in Ethiopia. *Tropical Medicine and Infectious Disease*, 8(4), 208.

Ahmad, I., Yakubu, Y., Chafe, U. M., Bolajoko, B. M., & Muhammad, U. (2020). Prevalence of fasciolosis (Liver flukes) infection in cattle in Zamfara, Nigeria: A slaughterhouse surveillance data utilizing postmortem examination. Veterinary Parasitology: *Regional Studies and Reports*, 22, 100483.

Banwo, O. G., Oyedokun, P. O., Akinniyi, O. O., & Jeremiah, O. T. (2023). Bovine fasciolosis in slaughtered cattle at Akinyele, Ibadan, Nigeria. *Journal of Applied Veterinary Sciences*, 8(4), 104-110.

Beesley, N. J., Cwiklinski, K., Allen, K., Hoyle, R. C., Spithill, T. W., La Course, E. J., ... & Hodgkinson, J. E. (2023). A major locus confers triclabendazole resistance in *Fasciola* hepatica and shows dominant inheritance. *PLoS Pathogens*, 19(1), e1011081.

Corda, A., Corda, F., Secchi, V., Pentcheva, P., Tamponi, C., Tilocca, L., ... & Scala, A. (2022). Ultrasonography of

parasitic diseases in domestic animals: a systematic review. *Animals*, 12(10), 1252.

FAO (2007). <u>Meat Inspection Act.</u> https://faolex.fao.org/docs/pdf/al24443.pdf

Flores-Velázquez, L. M., Ruiz-Campillo, M. T., Herrera-Torres, G., Martínez-Moreno, Á., Martínez-Moreno, F. J., Zafra, R., ... and Pérez, J. (2023). Fasciolosis: pathogenesis, host-parasite interactions, and implications in vaccine development. *Frontiers in Veterinary Science*, 10, 1270064.

Girma, A., Genet, A., Teshome, K., Abdu, I., & Tamir, D. (2025). Prevalence and Economic Significance of Fasciolosis among Cattle Slaughtered at Municipal Abattoirs in Ethiopia from 2010 to 2023: A Systematic Review and Meta-Analysis. *Veterinary Medicine and Science*, 11(1), e70186.

Girma, A., Teshome, K., Abdu, I., Genet, A., & Tamir, D. (2024). Prevalence and associated economic losses of bovine fasciolosis from postmortem inspection in municipal abattoirs in Ethiopia: A systematic review and meta-analysis. *Veterinary and Animal Science*, 24, 100360.

Hayward, A. D., Skuce, P. J., & McNeilly, T. N. (2021). The influence of liver fluke infection on production in sheep and cattle: a meta-analysis. *International Journal for Parasitology*, 51(11), 913-924.

Kelley, J. M., Elliott, T. P., Beddoe, T., Anderson, G., Skuce, P., & Spithill, T. W. (2016). Current threat of triclabendazole resistance in *Fasciola* hepatica. *Trends in parasitology*, 32(6), 458-469.

Lalor, R., Cwiklinski, K., Calvani, N. E. D., Dorey, A., Hamon, S., Corrales, J. L., ... & De Marco Verissimo, C. (2021). Pathogenicity and virulence of the liver flukes *Fasciola hepatica* and *Fasciola gigantica* that cause the zoonosis Fasciolosis. *Virulence*, 12(1), 2839-2867.

Mancera, A. V., Cortez, H. J., Robles, M. R., Perez, J. O., Juarez, A. O., Castillo, J. R., ... & Mendoza, N. P. (2024). Climatic and environmental risk factors and their role in the prevalence of *Fasciola hepatica* in water buffalo (Bubalus bubalis) in Mexico. *Iraqi Journal of Veterinary Sciences*, 38(4), 731-737.

Modabbernia, G., Meshgi, B., & Kinsley, A. C. (2024). Climatic variations and *Fasciola*: a review of impacts across the parasite life cycle. *Parasitology Research*, 123(8), 300.

Nukeri, S., Malatji, M. P., Sengupta, M. E., Vennervald, B. J., Stensgaard, A. S., Chaisi, M., & Mukaratirwa, S. (2022). Potential hybridization of *Fasciola hepatica* and *F. gigantica* in Africa – A Scoping Review. *Pathogens*, 11(11), 1303.

Nyagura, I., Malatji, M. P., & Mukaratirwa, S. (2022). Occurrence of *Fasciola* (Digenea: *Fasciolidae*) species in livestock, wildlife and humans, and the geographical distribution of their intermediate hosts in South Africa – a scoping review. *Frontiers in Veterinary Science*, 9, 935428.

Oljira, W., Mideksa, B., Mekonnen, G., Kebebew, G., & Jorga, E. (2022). Fasciolosis in sheep and goats slaughtered at abattoirs in Central Ethiopia and associated financial losses. *Food and Waterborne Parasitology*, 28, e00173.

Opio, L. G., Abdelfattah, E. M., Terry, J., Odongo, S., & Okello, E. (2021). Prevalence of Fascioliasis and Associated Economic Losses in Cattle Slaughtered at Lira Municipality Abattoir in Northern Uganda. *Animals*, 11(3), 681.

Saijuntha, W., Andrews, R. H., Sithithaworn, P., & Petney, T. N. (2021). Biodiversity of human trematodes and their intermediate hosts in Southeast Asia. In Biodiversity of Southeast Asian Parasites and Vectors causing Human Disease. *Parasitology Research Monographs*, 14 (4), 63-95.

Seyedrasouli, M., Nozohour, Y., Mohajeri, D., Khordadmehr, M., Rojas, A., & Sazmand, A. (2023). Ectopic migration of *Fasciola* sp. in the lung of a water buffalo (Bubalus bubalis). *Iranian Journal of Veterinary Science and Technology*, 15(1), 58-61.

Weinstock, J. V., & Leung, J. (2022). Parasitic diseases: helminths. *Yamada's Textbook of Gastroenterology*, 3039-3078.

Yihunie, D. T., Mugisha, J. Y. T., Gebru, D. M., & Alemneh, H. T. (2024). Optimal control and cost-effectiveness analysis of *Fasciola hepatica* model. *Heliyon*, 10(19), e38540.

Yuguda, A. U., Iliyasu, M. Y., Mudi, H., Muhammad, A., Panda, S. M., & Samaila, A. B. (2024). Prevalence and Intensity of Fascioliasis in Cattle Slaughtered at Central Abattoir Gombe, Gombe State, Nigeria. *South Asian Journal of Parasitology*, 7(4), 321-332.