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ABSTRACT

Antimicrobial resistance (AMR) presents a notable catholic threat to animal and human health, with agricultural
soil avowed as a major source of antibiotic resistance genes (ARG). The significant impact of anthropoid activities
on the soil resistome is well-documented; a knowledge gap persists regarding certain microbial communities that
confer resistance, along with the most efficacious methods for their monitoring. This review addresses the
disparaging need for advanced, culture-based techniques to monitor ARGs in agricultural landscapes. We bring
forth a broad-based overview of the methodologies and bioinformatic pipelines for using environmental DNA
(eDNA) and metagenomics to snoop AMR. eDNA-based approaches are underscored for their cost-effectiveness,
enhanced sensitivity, and non-invasive nature for detecting a wider scope of ARGs, as well as those from non-
viable cells and mobile genetic elements, which repeatedly go undetected by traditional techniques. We moot how
high-throughput sequencing of eDNA, incorporated with metagenomic analysis, permits a circumstantial
assessment of the soil resistome, revealing both known and novel ARGs. We traversed the potential of these
methodologies to bring forth subtle insights into ARG dynamics. This review rules that adopting a standardized
eDNA metagenomics approach is key for effecting comparable, reliable data, through strengthening our
understanding of AMR transmission via the soil-microbe-plant linkages and informing an effective public health
blueprint to combat the post-antibiotic era.
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INTRODUCTION matters further (Deekshit and Srikumar, 2022).

Antibiotic resistance, a major global health concern
that affects both human and animal populations, is
brought on by the overuse and misuse of antibiotics
(Cella et al., 2023; Patangia et al., 2022). Although
other factors like environmental stress, unhygienic
surroundings, and ignorance also play a role,
antibiotic abuse in both humans and animals is
known to be the primary cause of antibiotic
resistance (Muteeb, 2023). Antimicrobial resistance
genes having the ability to revert and regain
resistance under suitable circumstances, their
presence in bacterial communities complicates
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Additionally, the production of antibiotics can
pollute the environment with active antibiotic
residues, increasing the prevalence of
microorganisms that resist antibiotics and the genes
they carry (Bengtsson-Palme et al., 2019).
Antimicrobial resistance genes (ARG), which may
have originated as a means of self-defense for
microorganisms, are abundant in soil (Hernandez et
al., 2023). Due to the above, ARGs are found in all
soil types, such as agricultural soil, forest soil etc.
(Popowska et al., 2012; Willms et al., 2019; Zheng et
al., 2021; Hwengwere et al., 2022).
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However, little is known about the makeup of the
soil microbiome community that is resistant to
antibiotics (Hernadndez et al., 2023). The high
concentration of eDNA in soil may be one of the
primary causes, as it is unable to differentiate
between active antimicrobial-resistant
microorganisms and dormant or dead antimicrobial-
sensitive microorganisms (Chen et al., 2019;
Cerqueira et al.,, 2020). This may be the cause of
some studies' conflicting findings, which range from
no change to a total alteration in microbiomes when
antibiotics are added (Zheng et al., 2021).
Monitoring microbiota may help determine the
effects of restoration interventions because they are
dependent on the resource and energy flows linked
to aboveground biota (Van der Heyde et al., 2020).
This technique can also be adopted for tracking of
ARGs in agricultural soil.

These techniques are currently being widely used in
a context of restoration. The advancement of high-
throughput, inexpensive eDNA sequencing as made
it possible to assess soil microbiota in an affordable,
quick, and thorough manner (Breed et al., 2019;
Mohr et al, 2022). eDNA high-throughput
sequencing has become a potent instrument for ARG
surveillance in various environmental matrices. This
approach allows the possibility to identify and
measure a variety of ARGs, providing valuable
insights into their distribution and abundance across
different ecosystems (Deshpande and Fahrenfeld,
2022).

ENVIRONMENTAL DNA (eDNA)

The genetic material present in environmental
samples like soil, water, and air encompasses whole
cells and extracellular DNA is referred to as
environmental DNA, or eDNA (Barnes and Turner,
2016). Using this approach captures eDNA from
environmental samples and preserves, extracts,
amplifies, sequences, and categorizes based on its
sequence (Deiner et al., 2017). The decomposing
remains of larger species, skin, mucus, saliva, sperm,
secretions, eggs, feces, urine, blood, roots, leaves,
fruit, and pollen can all contain eDNA, whereas
microorganisms can be obtained in their entirety.
The amount of eDNA produced by an organism
depends on its biomass, age, eating habits,
physiology, life history, and space usage (Barnes and
Turner 2016, Goldberg et al., 2016, Hering et al.,
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2018). This technique facilitates the detection of
non-invasive microorganisms. eDNA is a relatively
new surveying technique, it has exhibited great
promise for biological monitoring. The traditional
approaches to surveying richness and abundance
may rely on techniques that make it difficult to find
small or elusive species, have limitations due to
taxonomic identification, and may disturb or destroy
habitat (Ruppert, 2020). By concentrating on unique
species, sampling a greater range of diversity, and
enhancing taxonomic resolution, eDNA can support
these methods (Deiner et al., 2017). In any case, it
can be used to identify the initial appearance of
uncontrollable species, the continued existence of
indigenous species that are believed to be
exterminated or threatened, and other elusive
species that are found in low densities and would be
challenging to find using conventional methods
(Ruppert, 2020).

METAGENOMICS

The genomic analysis of microorganisms directly
from their natural habitat, without preceding
culturing, is termed as Metagenomics (Handelsman,
2004; Wooley and Ye, 2010). The revolutionization
of soil microbiology research came through
metagenomics by equipping the study of the entire
genetic makeup within microbial populations in the
environments. This approach not only provides
direct access to the vast genetic diversity of the
uncultivated soil microorganisms but also overcomes
the constraint of traditional culturing and PCR-based
methods (Garg et al., 2024; Semenov, 2021).
Metagenomics  techniques in  soils include
approaches like high-throughput sequencing and
stable-isotope probing; these leverage on shotgun
metagenomics, which can unveil the composition,
function and diversity of soil bacteria influenced by
land use and soil management (Garg et al., 2024).
Functional metagenomics is one effective technique
emerged for identifying ARGs in soil environments.
This technique has revealed the soil as a repository
of diverse ARGs, a large number of which are novel
and differ from known resistance determinants (Su
et al., 2014; Torres-Cortés et al.,, 2011). Several
Studies have reported numerous new ARGs
conferring resistance to abundant antibiotics, these
include gentamicin, ampicillin, trimethoprim and
chloramphenicol, (Torres-Cortés et al., 2011).
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The identification of ARGs that are not found in the
traditional database can be detected using
functional metagenomics compiled in ResFinderFG
v2.0 database (Gschwind et al., 2023). These findings
emphasize the importance of soil as a wellspring of
antibiotic resistance and high spot the need for
continued research to comprehend the dynamics of
ARGs in the soil ecosystems.

METHODOLOGIES FOR eDNA ARGs
SURVEILLANCE IN AGRICULTURAL SOIL

Soil Sampling

Addressing heterogeneity, larger volumes of samples
of soil and sediment samples are required over
larger spatial scales to detect diverse classes of
organisms (Taberlet et al., 2012, Creer et al., 2016).
Due to the consequential risk of contamination,
supplies and equipment must be separated from the
PCR, tissues, and organisms processed, and samples
must be decontaminated (Goldberg et al., 2016).
Negative field controls are essential to validate the
sample and identify contamination (Goldberg et al.,
2016, Hering et al., 2018).

Soil Sample Preservation

Sample types can be preserved in a variety of simple
ways, such as freezing (-20°C), drying, or storing in
ethanol (absolute ethanol) or cell lysis buffer (Creer
et al., 2016, Goldberg et al., 2016). Preserving
samples immediately prevents degradation (Barnes
et al., 2014, Strickler et al., 2015, Tsuji et al., 2017).
This degradation sample can be influenced by the
organisms and certain environmental factors such as
temperature, pH, and light exposure.
Decontamination of Soil Sample

Although laboratory techniques vary from study to
study, they are generally more consistent across
sample types. It is recommended that eDNA be
processed in a clean laboratory using non-removable
equipment and supplies. Before entering the clean
laboratory, personnel and supplies must be
decontaminated (Goldberg et al., 2016). Filter pipet
tips and clean gloves should be used during all
procedures, and the lab's processing areas should be
cleaned with bleach and UV light on a regular basis
(Champlot et al., 2010, Goldberg et al., 2016).
Replicates, positive controls, and negative controls
are key components of laboratory procedure
(Ficetola et al., 2015, Deiner et al., 2017).
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DNA Extraction Methods for Metagenomics
Analysis

In metagenomics research, eDNA extraction
methods for soil samples have been extensively
researched, with diverse approaches showing
varying levels of efficiency and quality.

Up to 100-fold increases in DNA concentration have
been reported through direct extraction methods as
compared to indirect methods (Roh et al., 2006). The
selection extraction methods can impact the
observed microbial community structure, with
statistical analyses showing variations in the
recovery of genetic material for 24 out of 32
investigated phyla (Zielinska et al., 2017).

The combination of chemical (CTAB and CaCl,) and
enzymatic (lysozyme and proteinase K) approaches
have ensured efficient cell lysis and production of
high-quality metagenomic DNA from diverse soil
samples (Verma et al, 2017). The Use of
polyethylene glycol (PEG) and isopropanol for
precipitation aids in the removal of humic
impurities (Verma et al., 2017). For saline soils, a
protocol that utilizes mechanical (beads and
sonicator) and soft lysis (SDS and enzymes) methods
has been developed to extract DNA suitable for
metagenomic analysis (Purohit and Singh, 2009).

It is reported that the optimum soil sample
preservation and DNA extraction techniques for
eDNA metagenomic analysis depend on practical
limitations, research goals and costs (Guerrieri et al.,
2020). It is recommended to test several extraction
kits at the start of each study to select the one that
produces the most representative results (Zielirnska
etal. 2017).

To identify and measure eDNA-associated ARGs in
soil samples, several methods have been developed.
In environmental samples, magnetic bead-based
techniques have demonstrated potential for the
separation of intracellular DNA (iDNA), adsorbed
eDNA (a-eDNA), and free eDNA (f-eDNA). Compared
to more conventional techniques like alcohol
precipitation, CTAB-based extraction, and
commercial DNA extraction kits (<10%), this strategy
has shown higher recovery rates (>85.3%) (Yuan et
al., 2019).

In order to accurately partition ARGs between soil
and sediment samples, a novel internal standard
method for extracting eDNA and iDNA has been
developed (Mao et al., 2013). This technique has
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been applied in assessment of several sediment,
underling the importance of eDNA reservoir. ARGs
were detected for more than 20 weeks in sediment
samples, whereas chromosomally encoded 16S rRNA
genes were undetectable after 8 weeks, indicating
higher persistence of plasmid-borne ARGs (Mao et
al., 2013). eDNA concentrations were found to be
higher than iDNA in sediment samples, probably due
to enhanced persistence when associated with clay
particles and organic matter (Mao et al., 2013). This
technique utilizes binding eDNA with sediment
particles to create a protective environment which
will subsequently reduce degradation.

Different kits exist and their effectiveness differs
depending on the target taxa, especially between
eukaryotes and prokaryotes. kit-based extraction
procedures are likely the most popular and generally
effective (Deiner et al., 2017, Creer et al., 2016). The
efficient approaches are phenol chloroform
extractions, which in some cases may isolate more
genetic material than other techniques (Creer et al.,
2016, Deiner et al., 2017).

The ability to detect ARG reservoirs in soil
environments has greatly improved due to the
advent of efficient eDNA extraction methods and
advanced quantification methods like qPCR arrays
and shotgun metagenomic sequencing (Wang et al.,
2015). These methods help learn more about the
abundance, diversity, and potential for horizontal
gene transfer of ARGs. This is important for stopping
the spread of antibiotic resistance in the
environment (Takeda-Nishikawa et al., 2023).

Library Preparation for eDNA Sample

Metagenomic library preparation is a pivotal step
toward studying microbial communities across a
variety of different environmental samples. Several
methods and kits are available for constructing
metagenomic libraries, each with certain benefits
and drawbacks.

Library preparation methods may affect the
metagenomic data and further analyses from the
very first experiment. The allowability of library
preparation with low DNA input remains
controversial. For example, some studies describe
the construction of libraries with 1 pg to 1 ng of
input DNA using KAPA Hyper Prep and Nextera XT
kits (Hirai et al., 2017). The lower bias limit in
libraries was found to be about 10 pg input DNA.
However, libraries made from very small amounts of
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DNA, such as 1 pg, are expected to be more biased in
GC content, k-mers, or Small Subunit rRNA Gene
composition (Hirai et al., 2017).

Furthermore, different library preparation methods
can introduce varying biases. A comparison of the
Nextera XT DNA Library Preparation Kit and a
standard 454 FLX Titanium protocol indicates that
GC content bias was largely attributable to the
Nextera protocol rather than the sequencing
technology itself (Marine et al., 2011). The TruSeq kit
has been shown to produce more uniform data
quality than Nextera XT for Mycobacterium
tuberculosis sequencing, regardless of input DNA
quality (Tyler et al., 2016). Some methods, like the
NEBNext Enzymatic Methyl-seq and Swift Accel-NGS
Methyl-Seq kits, have demonstrated better
performance for whole-genome DNA methylation
sequencing (Morrison et al., 2021).

While metagenomic library preparation has
advanced significantly, allowing for the analysis of
low biomass samples and the use of portable
equipment (Acharya et al., 2020), researchers must
carefully consider the impact of their chosen method
on the resulting data. Factors such as input DNA
quantity, GC content bias, and the specific research
objectives should guide the selection of library
preparation  protocols to ensure accurate
representation of microbial communities in
metagenomic studies.

Sequencing of eDNA Sample for Metagenomics
Whole genome sequencing (WGS) and
metagenomics, has revolutionized our
understanding of microbial diversity and genes
functions in various environments. The rapid
evolvement of omics results in advances in DNA
sequencing technologies, moving from shotgun
sequencing to high-throughput next-generation
sequencing (NGS) and third-generation sequencing
(TGS) (Qulas et al., 2015; Zhang et al., 2021). These
technologies have significantly improved our ability
to study uncultured microorganisms, novel enzymes,
and microbe-environment interactions in diverse
settings such as aquatic, terrestrial, and human
biomes (Ininbergs et al., 2015; Ju and Zhang, 2015).
De novo assembly and reference-based assembly are
the two approaches documented to assembling
short shotgun sequence reads into longer
contiguous genomic sequences (Ng and Kirkness,
2010). The de novo method compares and overlaps
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sequence reads, while the reference-based approach
maps reads to a reference genome sequence.

The development of targeted approaches, such as
stable isotope probing combined with whole
genome shotgun sequencing, allows researchers to
link specific microbes to ecological functions in
complex communities (Kalyuzhnaya et al., 2008). As
sequencing technologies and bioinformatics tools
continue to advance, metagenomics will play an
increasingly important role in environmental
monitoring, biotechnology applications, and our
understanding of microbial ecology (Bragg and Tyson,
2014; Ininbergs et al., 2015; Ju and Zhang, 2015).
WGS methods continue to advance, offering
improved resolution for genetic analyses across
various applications. While challenges remain, such
as direct sequencing from clinical
specimens  (Mcnerney et al, 2017) and
standardization of typing tools (Uelze et al., 2020),
ongoing research aims to optimize WGS
methodologies. The development of streamlined
sample preparation platforms, like Digital-WGS for
single-cell WGS (Ruan et al.,, 2020), and the
comparison of different sequencing
approaches contribute to the continuous
improvement of WGS techniques (Chen et al., 2021),
paving the way for broader applications in genomics
research.

Bioinformatics Tools for eDNA Metagenomics
Environmental DNA (eDNA) serves as powerful tools
for biodiversity assessment and ecological
monitoring. These techniques rely heavily on
bioinformatics for data processing, analysis, and
interpretation. Several software packages and
pipelines have been developed to handle the
complex computational tasks associated with eDNA
studies (Curd et al., 2019; Sprague et al., 2018).

The eDNA shotgun metagenomics can be utilized for
monitoring ARGs in various environments. For ARG
detection and quantification, several bioinformatics
pipelines and databases are available. These include
ARGs-OAP, which uses the Structured ARG reference
database (SARG) for fast annotation and
classification of ARG-like sequences (Yang et al.,
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2016). Other databases like ARDB and CARD are also
commonly used (Gupta et al., 2020). The choice of
database and pipeline can significantly impact
results, so it's essential to select tools appropriate
for the specific analysis being conducted (Gupta et
al., 2020).

Different bioinformatics approaches can vyield
varying results. A report by Deshpande and
Fahrenfeld, (2022) on comparison of network
analysis of raw reads versus assembly for host
assignment of ARGs showed that the raw reads
pipeline identified more ARG hosts (247) compared
to the assembly pipeline.

R packages like ranacapa provide user-friendly
interfaces for exploratory biodiversity analyses and
visualizations of eDNA results (Sprague et al., 2018).
The Shiny web app within ranacapa allows users to
interact with eDNA data through interactive figures
and simple community ecology analyses. In the
R/Bioconductor ecosystem, the lefser package offers
functionality for metagenomic biomarker discovery,
improving upon the widely-used LEfSe algorithm in
terms of performance, accuracy, and
reproducibility (Khleborodova et al., 2024).
Python-based tools are also prevalent in eDNA
metagenomic analysis. InSilicoSeq, for instance, is a
Python package designed to simulate metagenomic
Illumina sequencing data, which is crucial for
benchmarking bioinformatics tools and experimental
design (Gourléet al., 2018). Several online tools are
available for metagenomic data analysis, with MG-
RAST, IMG/M, and METAVIR being among the most
cited (Dudhagara et al., 2015).

The field of eDNA metagenomic analysis benefits
from a diverse array of bioinformatics tools and
software packages in both R, Python, BASH, Perl, etc.
These tools cater to various aspects of metagenomic
analysis, from data simulation and quality control to
biodiversity assessment and visualization. As the
field continues to evolve, more specialized and user-
friendly tools will likely emerge to address the
complex challenges of eDNA metagenomic data
analysis.
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Table 1. Summary of methodologies for eDNA ARGs Surveillance in Agricultural Soil

Category

Description

Soil Sampling
Soil Preservation
Soil Decontamination

DNA Extraction

Library Preparation

Sequencing

Bioinformatics Tools

Larger quantities from various sites to prevent heterogeneity

Preserving in cell lysis buffer or 100% ethanol, drying, or freezing at -20°C
Use of controls and duplicates, clean lab processing, bleach and UV
cleaning, and separate field and lab equipment

Direct techniques produce more DNA; enzymatic and chemical strategies
for effectiveness; techniques for saline soils; testing multiple kits for best
results; and techniques based on magnetic beads for sorting different types
of DNA

Effects on metagenomic data, difficulties with low biomass samples,
possible biases, and the significance of choosing the right method for
accurate representation

Developments from shotgun to NGS and TGS, reference-based and de novo
assembly, and the connection between microbes and ecological roles
Pipelines and databases for ARG detection (e.g., ARGs-OAP, SARG, ARDB,
CARD), R packages (e.g., ranacapa), Python-based tools (e.g., InSilicoSeq),
and online tools (e.g., MG-RAST, IMG/M, METAVIR) are used for data
processing, analysis, and interpretation.

CHALLENGES OF eNA METAGENOMICS

eDNA metagenomics has many obstacles to
overcome, it also offers exciting new avenues for
ecological monitoring and biodiversity assessment.
The absence of standardized procedures and
methods for eDNA sampling, preservation, and
analysis is one of the main obstacles (Pawtowski et
al., 2021). The problem is made more difficult by the
lack of universal standards for guaranteeing that
data is FAIR (findable, accessible, interoperable, and
reusable) (Shea et al., 2023). The robustness and
comparability of findings across studies may be
impacted by this variation in methodology. The
different sources and states of DNA in
environmental samples, along with its persistence in
sediments, can further complicate the interpretation
of eDNA data (Pawtowski et al., 2021).

Numerous biotic and abiotic factors affect eDNA
concentrations in natural environments, making it
difficult to determine the accuracy of abundance
estimates from eDNA. This weakens the relationship
between eDNA and actual organism abundance
(Yates et al., 2021).

While eDNA metagenomics has a lot of promise for
monitoring biodiversity, resolving these issues is
essential to enhancing the accuracy and usefulness
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of these methods. To overcome these constraints
and fully utilize the potential of eDNA-based
approaches in ecological research and conservation,
efforts must be made toward standardization,
reference database expansion, and a deeper
comprehension of eDNA dynamics in various
ecosystems.

FUTURE DIRECTIONS OF EDNA
METAGENOMICS

eDNA metagenomics has a bright future.
Advancements in  sequencing  technologies,
bioinformatic algorithms, pipelines, and methods for
converting biosynthetic gene clusters into small
molecules are expected to increase the rate of
antibiotic discovery from metagenomes.

Combining advanced molecular biology methods
with eDNA analysis is a crucial step forward. This
includes the application of single-cell technologies,
genomics, and epigenomics, which are expected to
change eDNA analysis from a method for identifying
species distribution to one that can clarify an
organism's physiological condition and behavior. As
reported in a study by Yates et al., 2021, the
integration of eDNA dynamics and physiological
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factors into models could improve abundance
estimates.

The development of environmental protein analysis,
environmental sample processors, and ecogenomic
sensors offers new opportunities for eDNA
technology (Wang et al., 2019).

In conservation and spatial planning, eDNA analysis
is poised to play a crucial role in informing
biodiversity conservation decisions. The integration
of eDNA data with spatial planning processes could
provide valuable information on biodiversity over
spatial-temporal scales that are currently prohibitive
in traditional studies (Bani et al., 2020). This could
significantly enhance our ability to make informed
decisions about ARGs areas and other conservation
efforts.

As these technologies continue to evolve, eDNA
metagenomics is set to become essential tools in
ecological monitoring, global conservation studies,
and drug discovery efforts.

CONCLUSION

This essay aims to review the methodologies to
harness eDNA assay for the surveillance of soil
microbiome and antimicrobial resistance genes in
agricultural soil, assess the effectiveness of the assay,
and review the literatures of eDNA metagenomics in
order to design a research plan for implementing the
best molecular methods for the project. Despite the
considerable potential of eDNA research as reported
in several studies, tracing ARGs through eDNA
metagenomics is a challenging endeavor, one of the
predominant issues is a targeted approach utilizing
mainly on bioinformatics tools, and the patchiness of
bacterial eDNA on soil. Further complications include
the generally limited persistence of eDNA,
considerable differences between systems regarding
physicochemical conditions which may affect eDNA
decay rates and detectability, and the
incompleteness of reference databases.
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